Multi-scale approach to the emergence of technological innovation waves: the case of hydraulic turbines during the Spanish industrialization

Sergi Lozano (IPHES) and Marc Badia-Miró (UB)

1st International Conference on "Cliometrics and Complexity". cac2016.

Funding by Fundación Ramón Areces

XII Concurso Nacional para la Adjudicación de Ayudas a la Investigación en Ciencias Sociales

Innovación individual y olas de cambio técnico: particularidades de la mecanización de la primera industria española

Individual innovation and waves of technical change: Particularities of mechanization at the first Spanish industry

Introduction

- Motivation: Technological change as a key ingredient of economic development
- **Focus**: Spatio-temporal diffusion (waves of change)
- Case study: Adoption of hydraulic turbines during second half of 19th century in Spain
 - ▶ an efficient alternative to coal during the Spanish early-industrialization
 - Few Spanish producers and negligible imports \Rightarrow controlled scenario

Common approaches in Economic History

Objective

To integrate these two approaches by addressing the case study as an **emergent phenomenon**.

Data

- Temporal window: From first 'Spanish' turbine (1858) to 1st World War.
- ► Main dataset: Selling list (Jordi Nadal). We GOT all machines sorted temporally, including: Buyer, power, location (place and province) and economic sector. For several engines we DID NOT get the year of acquisition ⇒ Local History research and Industrial Archaeology

Number of turbines

Figura 3 – Número de turbinas hidráulicas construidas por "Plans y Cia.", "Averly" y "MTM", excluyendo las turbinas destinadas a la producción de electricidad

Fuente: Elaboración propia a partir de (Nadal, 1992, 2003) combinando multitud de fuentes complementarias (véase apéndice).

Our approach: Micro - macro link

- 1. A macroscopic description of the phenomenon
- 2. Analyze local factors influencing turbine installation
- Computational experiments to better understand the micro-macro link

Macro description: Fitting a logistic function

$$y_{it} = rac{eta_{i,1}}{1 + e^{-eta_{i2}(t - eta_{i3})}}$$

- ► Y_{it} is the level of adoption of a technology for a sector or region i, t is the period considered
- β_{ik} are the fitted parameters of the logistic function (with economic significance).
 - β_{i1} is the saturation value around the year when the adoption of technology stabilizes
 - β_{i3} is the year when 50 % of the adoption is adopted.

General

Figura 7 - Nivel de adopción de la potencia instalada (CV) del total de las turbinas instaladas y el total de las turbinas no destinadas al sector eléctrico y el ajuste de la función logística (1855-1910)

Spatial distribution (by decades)

From turbines location to individual adoption decisions.

- Hypothesis: Besides the dependence on geographic constraints and economic determinants, there was an underlying process of influence ('contagion') among innovators.
- Following previous literature on diffusion of innovations and social contagion, we focused on three aspects:
 - Individual adoption thresholds and their distribution within population (Rogers, 1955; Hägerstrand, 1968; Granovetter, 1978)
 - Social networks linking decision-makers (Valente, 1995; VandenBulte2001)
 - Individual vs. environmental (mass-media) influence

Computational experiments

- Computational experiments combining Agent-Based Modelling and network analysis to reproduce macroscopical trends.
- ► 3 aspects:
 - Individual adoption thresholds: Homogeneous or heterogeneous scenarios based on provinces' 'type of adopters' (i.e. *early adopter, majority & laggard*).
 - Social networks: 2 network models (Erdös-Renyi and Spatially-dependent graphs)
 - Individual vs. environmental influence: Simulated decision procedure based on neighbours' state

Adoption thresholds

Tabla 6 - Proporción de tipos de adoptantes en función del momento de compra de la primera turbina, por

provincias

	Early adopters (%)	Majority (%)	Laggards (%)
Alicante	0	0	100
Barcelona	58,70	36,96	4,35
Burgos	13,33	80	6,67
Córdoba	8,33	75	16,67
Girona	14,29	57,14	28,57
Granada	0	81,25	18,75
Guadalajara	0	73,33	26,67
Guipúzcoa	0	66,67	33,33
Huesca	35,71	28,57	35,71
Jaén	0	66,67	33,33
Lleida	28,57	28,57	42,86
Madrid	22,22	66,67	11,11
Málaga	0	100	0
Teruel	13,04	56,52	30,43
Valencia	0	0	100
Zaragoza	15,56	71,11	13,33

Network models

Erdös-Renyi (null case)

Spatially dependent

Simulated decision dynamics

Direct influence

$$s_i = egin{cases} 1, & ext{if } au_i > rac{\sum_{j \in N_n} s_j}{|N_n|} \ 0, & ext{otherwise} \end{cases}$$

Where *i* is the agent making the decision, τ_i is its adoption threshold, N_n is the set of direct neighbours it has in the network, and s_j takes value 1 when agent's *j* state is ADOPTED.

Indirect influence

$$m{s}_i = egin{cases} 1, & ext{with probability } p_{media} = \sigma rac{\sum_{j \in N} m{s}_j}{|N|} \ 0, & ext{with probability } 1 - p_{media} \end{cases}$$

Where σ is the sensibility of any agent to the environmental (media) pressure, and its value range is [0, 1].

Intermediate results

Random network + homogeneous population

Spatial network + homogeneous population

Spatial network + heterogeneous population

Preliminary fitting to empirical data

Combining all the previous mechanisms and adding some sensitivity to the media influence:

Sumarizing..

- Diffusion of hydraulic turbines in Spanish early Industrialization as an emergent phenomenon
- A combination of macroscopic description, microscopic analysis and multiagent model (micro-macro link)
- Already interesting results from computational experiments (but still working on it..).

Thank you !

Sergi Lozano (slozano@iphes.cat)

