Nonlinear interdependencies or contagions phenomenons between the main European stock market indices? Evidence from a chaos-stochastic model

presented by Rachida HENNANI

LAMETA(UMR CNRS 5474) University of Montpellier

06/09/2016

Contagions or interdependencies? An approach by a chaos-stochastic model

Financial crisis

- Financial crisis
 - systemic risk: potential threat to the stability of the global financial system.

Conclusions: empirical implications and futurs work

- systemic risk: potential threat to the stability of the global financial system.
- Sovereign debt crisis in the Eurozone from spring 2010.

- systemic risk: potential threat to the stability of the global financial system.
- Sovereign debt crisis in the Eurozone from spring 2010.
- Financial contagion: a mechanism through which financial instability spreads to the systemic risk.

Literature review

- systemic risk: potential threat to the stability of the global financial system.
- Sovereign debt crisis in the Eurozone from spring 2010.
- Financial contagion: a mechanism through which financial instability spreads to the systemic risk.
 - contagion reflects the transmission of a collision between two countries that do not have common characteristics

- systemic risk: potential threat to the stability of the global financial system.
- Sovereign debt crisis in the Eurozone from spring 2010.
- Financial contagion: a mechanism through which financial instability spreads to the systemic risk.
 - contagion reflects the transmission of a collision between two countries that do not have common characteristics
 - contagion capture the vulnerability of a country to the events that occur in other countries.

No contagion

VS

CONTAGION EFFECTS

Why is it important to dissociate an interdependent relationship of contagion relationship?

links on European Stock Market indices (ESMI): warnings signs of systemic risk. De Bandt and Hartmann(2000): impacts of contagion effects on systemic risk.

No contagion

Literature review

VS

CONTAGION EFFECTS

Why is it important to dissociate an interdependent relationship of contagion relationship?

- links on European Stock Market indices (ESMI): warnings signs of systemic risk. De Bandt and Hartmann(2000): impacts of contagion effects on systemic risk.
- Interdependencies: Short term policies are inefficients.
 - the period.

No contagion

Literature review

VS

CONTAGION EFFECTS

Why is it important to dissociate an interdependent relationship of contagion relationship?

- links on European Stock Market indices (ESMI): warnings signs of systemic risk. De Bandt and Hartmann(2000): impacts of contagion effects on systemic risk.
- Interdependencies: Short term policies are inefficients.
 - → Why? It is a long term relationship unchanged whatever the period.
- Constancio(2012): a contagion is an externality to the 'contamined' market ⇒ Financial compensation?

What are the causes of the contagion?

Theory of non-contingent contagion -fundamentales causes-

Literature review

- Trade links
- Financial links [\ FDI...]
- Global shocks

Theory of contingent contagion -Behaviours of investors-

Investor psychology

Conclusions: empirical implications and futurs work

- Endogenous liquidity shock
- Political contagion

Aim: Bring out the nature (interdependence or contagion) of Stock Market Indices in Eurozone countries for economics policies purposes.

Theories of contagion

Outline

Introduction

00000

Introduction

Appendix

Outline

Introduction

00000

- Introduction
- 2 Literature review

Outline

Introduction

- Introduction
- 2 Literature review
- Empiricals results

Outline

Introduction

- Introduction
- 2 Literature review

Literature review

- Empiricals results
- 4 Conclusions: empirical implications and futurs work

Appendix

NO

 Tamakoshi and Hamori (2011) \Rightarrow no causal relationships between GIPSI countries on [2007-2009] & [2009-2011].

YES

NO

- Tamakoshi and Hamori (2011) ⇒ no causal relationships between GIPSI countries on [2007-2009] & [2009-2011].
- Potential bias: use of two stressed period.

YES

Appendix

Is there contagion between European countries?

NO

- Tamakoshi and Hamori (2011) \Rightarrow no causal relationships between GIPSI countries on [2007-2009] & [2009-2011].
- Potential bias: use of two stressed period.

YES

 Yang(2005), Cheung and Fung (2008) and Yiu et al.(2010) \rightarrow intensification of relationships after financial crisis.

Is there contagion between European countries?

NO

Introduction

- Tamakoshi and Hamori (2011) ⇒ no causal relationships between GIPSI countries on [2007-2009] & [2009-2011].
- Potential bias: use of two stressed period.

YES

- Yang(2005), Cheung and Fung (2008) and Yiu et al.(2010) → intensification of relationships after financial crisis.
- Constancio (2012), Amisano and Tristiani (2011): contagion between European countries after financial crises(2007 & 2012).

NO

Introduction

- Tamakoshi and Hamori (2011) ⇒ no causal relationships between GIPSI countries on [2007-2009] & [2009-2011].
- Potential bias: use of two stressed period.

YES

- Yang(2005), Cheung and Fung (2008) and Yiu et al.(2010) → intensification of relationships after financial crisis.
- Constancio (2012), Amisano and Tristiani (2011): contagion between European countries after financial crises(2007 & 2012).
- Beirne and Fratzcher(2013): Eurozone countries are characterized by an underestimation of the sovereign risk in pre-crisis and an overestimation in crisis periods.
 - ⇒ What about the market risk of Eurozone Stock Market Indices?

Literature review

Introduction

Contagions and interdependencies \iff an important literature and a diversity of methodologies:

Conclusions: empirical implications and futurs work

```
King and Wadhani(1990)
Baig and Goldfajn(1998)

Linear correlation coefficient
Boyer et al.(1997)
Forbes and Rigobon(2001)

Adjusted correlation coefficient
```

Dungey et al.(2005): structural breaks, autoreg. and heterosc. structures.

Corsetti et al.(2005): comparaison between a corrected correlation coefficient and an index of interdependence.

Caporale et al.(2005): Method based on a conditional correlation which include heteroskedasticity.

Xu(2008): Extreme Value Theory

Kyrtsou and Labys(2006, 2007): Non linear causality test of Granger (bivariate Mackey-Glass (MG) model)
Kyrtsou and Vorlow(2009): Noisy bivariate MG with BEKK-GARCH process.

Our methodology:

We propose an original model for detecting and analysing the nature of the links between ESMI:

The multivariate Mackey-Glass-DCC-GARCH model:

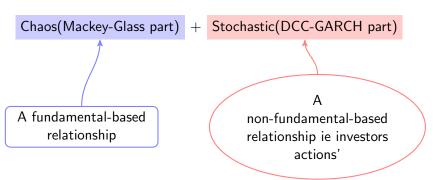
$$X_{it} = \alpha_i \frac{X_{i,t-\tau_i}}{1 + X_{i,t-\tau_i}^{c_i}} - \delta_i X_{i,t-1} + \sum_{\substack{j=1 \ j \neq i}}^n \alpha_j \frac{X_{j,t-\tau_j}}{1 + X_{j,t-\tau_j}^{c_j}} - \delta_j X_{j,t-1} + \epsilon_{i,t}$$

With

$$\epsilon_t = \begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \\ \dots \\ \epsilon_{i,t} \\ \dots \\ \epsilon_{n,t} \end{pmatrix}$$

And $\epsilon_t | \Omega_{t-1} \sim N(0, H_t)$ Where Ω_{t-1} the set of informations available in t-1. H_t is defined by :

$$H_t = D_t R_t D_t \tag{1}$$


$$D_t = diag(h_{1t}^{1/2}, ..., h_{Nt}^{1/2})$$
 (2)

$$R_t = (diagQ_t)^{-1/2}Q_t(diagQ_t)^{-1/2}$$
 (3)

DCC with t=1, ..., n

$$R_t$$
{ CCC with $R_t = \overline{R}$
 $\forall t = 1, ..., n$

Contagion phenomenon:

- in mean : a feedback effect is highly significant in stressed period and low or inexistant in calm period.
- in variance : intensification of conditional correlations in stressed period.

Six Europeans indices: Germany (DAX 30), France (CAC 40), Italy (SP 40), Portugal (PSI 20), Spain (IBEX 35), Greece (ATHEX 20).

Analysis in 2 periods:

	Period 1	Period 2		
	[11/28/2003-	[11/28/2007-		
	11/27/2007]	[27/2007] 11/25/2012]		
Common characteristics	calm period	stressed period		
for all indexes	low variance	leptokurticity, high		
		variance.		
Engle and Sheppar	d CCC-GARCH	DCC-TGARCH		
(2001)'s test				

Fundamental contagion

- special relationships between French, German and Italian indexes
- calm period: Greek index is strongly impacted by German,
 French, Italian and Portuguese indexes...
- ... BUT on stressed period: Hellenic index is still impacted by French and German indexes and has a significant impact on Italian and Portuguese indexes.
- No fundamental interactions between Portuguese and Spanish indexes.

Are there contagion phenomenons?

	FR	ALL	ΙT	ES	PORT	GR
FR	1	0,70	0,60	-0,08	0,47	0,43
ALL	0,70	1	0,79	0,03	0,46	0,38
IT	0,60	0,79	1	0,06	0,40	0,38
ES	-0,08	0,03	0,06	1	0,03	0,01
PORT	0,47	0,46	0,40	0,03	1	0,32
GR	0,43	0,38	0,38	0,01	0,32	1

Table: Correlations coefficients (Calm period)

	FR	ALL	IT	ES	PORT	GR	
FR	1	0,94	0,89	0,85	0,73	0,03	
ALL	0,94	1	0,85	0,80	0,69	0,02	
IT	0,89	0,85	1	0,85	0,74	0,02	
ES	0,85	0,80	0,85	1	0,73	0,02	
PORT	0,73	0,69	0,74	0,73	1	0,00	
GR	0,03	0,02	0,02	0,02	0,00	1	

Table: Mean of the correlations coefficients (stressed period)

- Original modelling: multivariate approach of fundamental and non-fundamental interdependencies.
 - fundamental relationships are described by a non-linear chaotic model
 - 2 non-fundamental relationships are described by a DCC-GARCH model
- Empirical results
 - Mecanic contagion: CAC→IBEX, CAC⇔DAX, DAX&CAC → SP. DAX→PSI.
 - 2 Psychological contagion: DAX-CAC, SP-CAC, IBEX-CAC, PSI-CAC, SP-DAX, IBEX-DAX, PSI-DAX, IBEX-SP. PSI-SP PSI-IBEX.

- a highly integrated group (French, German and Italian indexes) with :
 - 1 a leadership: German index
 - 2 'transfert' index: Italian
 - 3 'consensual' index : French
- Results for the Hellenic index are interesting:
 - 1 a fundamental impact of German and French index
 - isolated in stressed period (correlations)

- confined contagions: strong impacts for French, German and Italian indexes.
- need for more integration of the Hellenic index to avoid mecanic impacts on European indices.

Open issues:

- What is happening in a more general framework, ie, with more indices?
- If Brexit occurs, how the relationships will be modified?

Economic implications and futurs work

Introduction

Thank you for your attention.

Calm period			Stressed period			
X _{it}	X_{jt}	$(\alpha_j - \delta_j) * 100$	X _{it}	X_{jt}	$(\alpha_j - \delta_j) * 100$	
	DAX	2,82		DAX	17,4	
CAC	SP	15,25	CAC	SP	6,7	
	PSI	6,07		IBEX	1,5	
	CAC	-26		CAC	-49	
DAX	SP	5,6	DAX	SP	0,2	
	DAX	1,35		DAX	9,5	
SP	CAC	-19		CAC	-26	
	DAX	-21		ATHEX	9,6	
IBEX PSI	SP	4,07	SP	IBEX	12,6	
	DAX	4,1		PSI	13,4	
	IBEX	15		DAX	2,5	
ATHEX	DAX	81	IBEX	IBEX	16,9	
	CAC	-28	IBEA	ATHEX	-29	
	SP	23,5		DAX	-5,5	
	PSI	34,8	PSI	IBEX	0,55	
			P31	ATHEX	7,1	
				DAX	23,2	
			ATHEX	CAC	52	
				PSI	-16	

∢ Back

