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Part 1;

checking for (quasi-)equilibrium
via Maximum-Entropy Ensembles



Complex (economic) systems over long times
=> in or out of equilibrium?

- Large complex systems: direct microscopic description impossible
and maybe noisy (e.g. like particles in a room);

- ldentify robust macroscopic properties (e.g. total energy), assume
all the rest is random (pause economic theory);

- Construct equilibrium model: treat the macroscopic properties as
constraints, maximize the entropy and make inference on the
microscopic state;

- Redo for multiple snapshots: If higher-order (w.r.t. constraints)
properties are correctly replicated, your system is quasi-equilibrium

- Release theory: check whether the constraint (e.g. energy) is
conftrolled by economic factors (e.g. temperature): if so, you have
a functionally explicit microscopic model with an explanatory
variable!



Constructing (quasi-)equilibrium ensembles

Real system
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T. Squartini and D. Gar]ascelli, New. J. Phys. 13, 083001 (2011)



Constructing (quasi-)equilibrium ensembles

. Real system
Maximize the

entropy

S=-5 P(G)nP(G)
G

subject to some
good constraint C
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Constructing (quasi-)equilibrium ensembles

Real system
Maximize the Check for equilibrium

entropy via deviations
=-5 P(G)lnP(G) e A X)
G o X]
subject to some of higher-order
good constraint C poperties X
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Example:
same system, two choices of constraints

Choice 1 Choice 2
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Transition from quasiequilibrium of model 1 (leff panel, white)
to quasi-equilibrium of model 2 (right panel, orange)
via a non-equilibrium regime (blue): early-warning signal!



Example:
same system, two choices of constraints

Choice 1 Choice 2
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Transition from quasiequilibrium of model 1 (leff panel, white)
to quasi-equilibrium of model 2 (right panel, orange)
via a non-equilibrium regime (blue): early-warning signal!

Real example: Duich interbank network 1998-2008!
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COMPLEX SYSTEMS

Complexity theory and financial regulation

Economic policy needs interdisciplinary network analysis and behavioral modeling
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raditional economic theory could not

explain, much less predict, the near

collapse of the financial system and its

long-lasting effects on the global econ-

omy. Since the 2008 crisis, there has

been increasing interest in using ideas
from complexity theory to make sense of eco-
nomic and financial markets. Concepts, such
as tipping points, networks, contagion, feed-
back, and resilience have entered the finan-
cial and regulatory lexicon, but
actual use of complexity models
and results remains at an early
stage. Recent insights and techniques offer
potential for better monitoring and manage-
ment of highly interconnected economic and
financial systems and, thus, may help antici-
pate and manage future crises.

POLICY

TIPPING POINTS, WARNING SIGNALS. Fi-
nancial markets have historically exhibited
sudden and largely unforeseen collapses, at
a systemic scale. Such “phase transitions”
may in some cases have been triggered by
unpredictable stochastic events. More of-
ten, however, there have been endogenous
underlying processes at work. Analyses of
complex systems ranging from the climate
to ecosystems reveal that, before a major
transition, there is often a gradual and un-
noticed loss of resilience. This makes the sys-
tem brittle: A small disruption can trigger a
domino effect that propagates through the
system and propels it into a crisis state.
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Recent research has revealed generic em-
pirical quantitative indicators of resilience
that may be used across complex systems to
detect tipping points. Markers include rising
correlation between nodes in a network and
rising temporal correlation, variance, and
skewedness of fluctuation patterns. These
indicators were first predicted mathemati-
cally and subsequently demonstrated experi-
mentally in real complex systems, including
living systems (I). A recent study of the
Dutch interbank network (2) showed that
standard analysis using a homogeneous net-
‘work model could only lead to late detection
of the 2008 crisis, although a more realistic
and heterogeneous network model could
identify an early warning signal 3 years be-
fore the crisis (see the chart).

Ecologists have developed tools to quan-
tify the stability, robustness, and resilience
of food webs and have shown how these
depend on the topology of the network and
the strengths of interactions (3). Epidemi-
ologists have tools to gauge the potential for
events to propagate in systems of interacting
entities, to identify superspreaders and core
groups relevant to infection persistence, and
to design strategies to prevent or limit the
spread of contagion ().

Extrapolating results from the natural
sciences to economics and finance presents
challenges. For instance, publication of an
early warning signal will change behavior
and affect future dynamics [the Lucas cri-
tique (5)]. But this does not affect the case
where indicators are known only to regula-
tors or when the goal is to build better net-
work barriers to slow contagion.

TOO CENTRAL TO FAIL. Network effects
matter to financial-economic stability be-
cause shock amplification may occur via
strong cascading effects. For example, the
Bank of International Settlements recently
developed a framework drawing on data on
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the intercc dness between banks to
gauge the systemic risk posed to the finan-
cial network by Global Systemically Impor-
tant Banks. Recent research on contagion in
financial networks has shown that network
topology and positions of banks matter; the
global financial network may collapse even
when individual banks appear safe (6). Cap-
turing these effects is essential for quanti-
fying stress on individual banks and for
looking at systemic risk for the network as

Published by AAAS

a whole. Despite on-going efforts, these ef-
fects are unlikely to be routinely considered
anytime soon.

Information asymmetry within a net-
work—e.g. where a bank does not know
about troubled assets of other banks—can
be problematic. The banking network typi-
cally displays a core-periphery structure,

“..policies and financial
regulation [that] weaken
positive feedback...
stabiliz[e] experimental
macroeconomic systems...”

with a core consisting of a relatively small
number of large, densely interconnected
banks that are not very diverse in terms of
business and risk models. This implies that
core banks’ defaults tend to be highly cor-
related. That, in turn, can generate a col-
lective moral hazard problem (i.e., players
take on more risk, because others will bear
the costs in case of default), as banks recog-
nize that they are likely to be supported by
the authorities in situations of distress, the
likelihood amplifies their incentives to herd
in the first place.

Estimating systemic risk relies on granu-
lar data on the financial network. Unfortu-
nately, business interactions between banks
are often hidden because of confidentiality
issues. Tools being developed to reconstruct
networks from partial information and to
estimate systemic risk (7) suggest that pub-
licly available bank information does not al-
low reliable estimation of systemic risk. The
estimate would improve greatly if banks
publicly reported the number of connec-
tions with other banks, even without dis-
closing their identity.

In addition to data, understanding the ef-
fects of interconnections also relies on in-
tegrative quantitative metrics and concepts
that reveal important network aspects, such
as systemic repercussions of the failure of
individual nodes. For example, DebtRank,
which measures the systemic importance
of individual institutions in a financial net-
work (8), shows that the issue of too-central-
to-fail may be even more important than
too-big-to-fail.
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AGENTS AND BEHAVIOR. Agent-based
models (ABMs) are computer models in
which the behavior of agents and their in-
teractions are explicitly represented as de-
cision rules mapping agents’ observations
onto actmns Although ABMs are less well

in 1 fi 1- ymic
systems than in, e.g., traffic control, epide-
miology, or battlefield conflict analyses, they
have produced promising results. Axtell (9)
developed a simple ABM that explains more
than three dozen empirical properties of
firm formation without recourse to external
shocks. ABMs provide a good explanation
for why the volatility of prices is clustered
and time-varying (10) and have been used
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Laboratory experiments with human
subjects can provide empirical validation
of individual decision rules of agents, their
interactions, and emergent macro behav-
ior. Recent experiments studying behavior
of a group of individuals in the lab v

monetary and fiscal policies and financial
regulation designed to weaken positive feed-
back are successful in stabilizing experimen-
tal macroeconomic systems when properly
m.hbrated (16') Complexity theory provides

1 under ding of these effects.

show that economic systems may deviate
significantly from rational efficient equi-
librium at both individual and aggregate
levels (14). This generic feature of positive

POLICY DASHBOARD. It is an opportune
time for academic economists, complex-
1ty suentlsts social scientists, ecologists,

iol and researchers at finan-

feedback systems leads to devia-
tions of prices from equilibrium and emer-
gence of speculation-driven bubbles and
crashes, strongly amplified by coordination
on trend-following and herding behavior
(15). There is strong empirical evidence of
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cial institutions to join forces to develop
tools from complexity theory, as a comple-
ment to existing economic modeling ap-
proaches (7). One ambitious option would
be an online, financial-economic dashboard
that integrates data, methods, and indica-
tors. This might monitor and stress-test the
global socioeconomic and financial system
in something close to real time, in a way
similar to what is done with other complex
systems, such as weather systems or social
networks. The funding requu'ed for essentlal
policy-! and di
ciplinary progress in these areas would be
trivial compared with the costs of systemic
financial failures or the collapse of the global
financial-economic system. m
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Early-warning signals of the 2008 crisis in the Dutch interbank network. The figure portrays a temporal analysis
of two loops, pairs of banks that are at the same time debtor and creditor to each other. Although the raw number of
two loops is not very informative about possible ongoing structural changes, its comparison with a random network
model benchmark is. A z-score represents the number of standard deviations by which the number of two loopsin

the real network deviates from its expected value inthe model. Small magmtudez scores (<3) indicate approximate
consistency with the model, whereas larger indicate Twodifferent
random network models were used: a homogeneous network with the same total number of links asin the real network

(top) and a heterogeneous network where every bank has the same number of connections as in the real network
(bottom). The homogeneous model, often used in standard analyses, highlights only a late and abrupt structural
change (2008). The more realistic heterogeneous model also identifies a gradual, early-warning “precrisis” phase

(2005-2007). [Modified from (2)]
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Part 2:

If sytems are at (quasi-)equilibrium,
thelr structure can be
reconstructed from
partial information

(I.e. from the "“right” constraints)



The challenge: reconstructing (interbank)
networks from partial information

Crucial for estimating
systemic risk:
collapse of entire network

Public:

each bank’s total exposure towards the aggregate of all other banks

Hidden:

each bank’s individual exposure towards each single bank



Local properties, O(N)
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Our goal:

Can we statistically reconsiruct
the original structure in such a way that:

1) Privacy is protected
2) Higher-order effects are correctly predicted X



Reconstruction from local information (constraints)

binary
A

weighted
A

f

>/ degree
iNn-degree &
out-degree
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>)/ strength

’ in-strength &
_ out-strength
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Binary constraints: fixed degree sequence

)/ C={k}

Equiprobable configurations:

SERICCRIS e

(must hold for all verfices simultaneously)

Note: the resulting distribution is FERMI-DIRAC



Result:

good binary reconstruction

of higher-order properties

from degrees only
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@ Office social network [27]

® Research group social network[27]

© Fraternity social network [27]

® Maspalomas Lagoon food web [28]
® Chesapeake Bay food web [28]

® Crystal River (control) food web [28]
® Crystal River food web [28]

® Michigan Lake food web [28]

® Mondego Estuary food web [28]

@ Everglades Marshes food web [28]

o Italian interbank network (1999) [26]
® World Trade Web (2000) [20]
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Weighted constraints: fixed strength sequence

)4 C=1s)

Equiprobable configurations:

(must hold for all vertices simultaneously)

Note: the resulting distribution is BOSE-EINSTEIN



Bad standard reconstruction (from strengths only)
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Reason: poor binary reconstruction from strengths only
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The naive expectation that aggregate weighted properties
are more informative than binary ones is incorrect!

R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli, New J. Phys. 16, 043022 (2014)



Doubling the constraints: degrees + strengths
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Note: the resulting distribution is BOSE-FERMI (mixed!)
[Garlaschelli & Loffredo, Phys. Rev. Lett. 102, 038701 (2009)]



Example: reconstructing the
average exposure of neighboring banks

ﬁaditional qpproach

(from “strengths” only)

Perfect performance

A
10° \ > ’
Realized performance

10' 15’ 1;35 1;1’
k True (hidden) value /

New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli

Reconstructed value




Example: reconstructing the
average exposure of neighboring banks

ﬁaditional qpproqch Enhanced method

(from “strengths” only) (from strengths + degrees)

Perfect performonce
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New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli
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Enhanced reconstruction (from strengths and degrees)
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Reconstructing systemic risk estimators

Percolation Path length Group DebtRank
(relative size of (distribution of (total devaluation induced
giant component vs shortest distances A by an initial devaluation ©)
occupation probability p) among pairs of nodes) [Battiston et al. 2012]
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Part 3:

If sytems are at (quasi-)equilibrium,

thelr structure can be
modeled with

explanatory variables

(which should couple to the
"right” constraints)



Same story for international trade

- Jan Tinbergen: 13" Nobel Memorial Prize in
Economics, 1969

XA

e
e
~

W -’ - Leiden, 1929: PhD Thesis in physics
~ "Minimumproblemen in de natuurkunde en
economie” (supervisor P. Ehrenfest)

~

e (simple) Gravity Model of infernational frade:

(T

(wij) = -GDPP -GDP! - D}, - X§

\ Simplest case: f=-Y=1, ex 0 (asin Newton's law) /

J. Tinbergen, Shaping the World Economy: suggestions for an international
economic policy (the Twentieth Century Found, New York, 1962).



The Gravity Model works well for “non-zeroes”
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... but: the Intfernational Trade Network (ITN)
has a complex topology!
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‘Against gravity’
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Even if only the correct number of links (leff panel) is placed
where the “gravity” is stronger, the (density-induced) GM
predicts too much assortativity (center) and clustering (right)

=> ‘repulsion’ where ‘attraction’ is expected, and vice versa!




GDP-driven model of Trade Network

Replacing hidden variables with country GDP in the binary configuration
model yields the Fithess Model (Caldarelli et al. PRL 2002)
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Adding weights: Enhanced Gravity Model
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Adding weights: Enhanced Gravity Model
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Part 4

If sytems are out of equilibrium,
reconstruction and modelling
are unreliable...

...but may still be crucial to build
early-warning signals



Dutch banks: signs of the crisis?
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Dutch banks: signs of the crisis?
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Dutch banks: signs of the crisis?

Crisis
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No sign of crisis?

Maybe not visible from purely topological quantitiese



Homogeneous benchmark/null model

Controlling for overall size and density of the network
(random graph)

4 )
Constraint:
number of links C=L
(and nodes)
- /

Comparing observed (X) and randomized (<X>) properties:

X —(X)
o X]

Z-SCOore  zy =

T. Squartini, |. van Lelyveld, D. Garlaschelli, Sci. Rep. 3 (2013) 3357



Seeing the crisis¢

Full dyads
(reciprocated)

Single dyads
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Seeing the crisise S Cm
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Heterogeneous benchmark

Controlling for different connectivities of banks:
heterogeneous benchmark/null model

\
Constraints:
iNn-degree & e in 1. out
out-degree C = {kz ,kl.
(of each node)
/
\
Constraints:
in-degree, pad in 7.out 7 _both
out-degree & C= {kz 9kz’ 9kz‘ }
reciprocal degree
/
X —(X)
Z-SCOore Zx =
o[ X]

T. Squartini, I. van Lelyveld, D. Garlaschelli, Sci. Rep. 3 (2013) 3357



... seeing
the crisise
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Foreseeing
the crisis?
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Heterogeneity (= “right” constraints) matters!

4 )

As seen from a homogeneous benchmark,
the collapse appears sudden (abrupt fransition)

- J

4 )

As seen from a heterogeneous benchmark,
the collapse appears gradual (continuous transition)

- J

Note: the measured guantities are the same in the
two cases; what changes is their expected valuel

X — (X)
o[ X]

T. Squartini, I. van Lelyveld, D. Garlaschelli, Sci. Rep. 3 (2013) 3357
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From dyads to triads

OTC markets: underestimation of counterparty risk
A (lends to B and C)

B A C (lends to B, but A doesn’t know)

A is (hopefully) prepared to the direct effect of B's default,
but not to the indirect effects of B's default through C.
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From dyads to triads
OTC markets: underestimation of counterparty risk

A (lends to B and C)

C (lends to B, but A doesn’t know)

A is (hopefully) prepared to the direct effect of B's default,
but not to the indirect effects of B's default through C.
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(for triads, we need to filter out dyadic effects) J



Debt loops: ‘risk autocatalysis’'?

Circular lending loops:
increased dependencies among default probabilities

N

Decreasing reciprocity = increasing systemic risk
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Circular lending loops:

increased dependencies among default probabilities
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Debt loops
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o




—

Debt loops Cot A"} s e CoOAR"]

Pre-crisis  Crisis

4 .l L)
2 L
0 R
O M \-j i
()] § -2¢ -
) .
Q —6f -
(%4 L
- — 8 L 3
=
Q —10t : : L L | NI
— 1998 | 1999 | 2000 | 2001 | 20027 2003 | 2004 | 2005 | 2006 | 20072008 1998 1999 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008
(4]
Q,
O
q
(o]
0,
=1
<
]
=
0
q
()]
(o)
K,

18

Msu OIwdsAs Bu



Debt loops
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Debt loops
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ALL TRIADS

>z

2 bbb

Z-score: Significance profile:
. — Nm(A*) - (Nm>* Spm — zm
e 0*[Nom] 13,
m 13 > m=1%m

T. Squartini and D. Garlaschelli, Lec. Not. Comp. Sci. 7166, 24-35 (2012)
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Comparison with International Trade Network:
quasi-stationary all the way (19250-2000)
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In/out equilibrium: take-home messages

Maximum-Entropy Ensembles are powerful to check for
(quasi-)equilibrium and identify the “right” constraints;

Economic networks are not well replicated/modeled without
Imposing local topological constraints (="right” constraints);

The international trade network is largely at (quasi-)equilibrium,
and can be modeled by coupling the GDP and/or distances to
the right constraints (improving upon gravity model);

Interbank networks at (quasi-)equilibrium can be reconstructed
reliably (along with their systemic risk) from the right constraints

As crises approach, interbank network reconstruction is unreliable
and actually prevents from detecting early-warning signals;

Still, the comparison with the “right” (quasi-)equilibrium model is
crucial to create the early-warning signal itself.



