Economic systems in and out of equilibrium: network models of trade, systemic risk, and early-warning signals

Diego Garlaschelli Lorentz Institute for Theoretical Physics

Leiden Institute of Physics garlaschelli@/orentz.leidenuniv.nl

Part 1:

> checking for (quasi-)equilibrium via Maximum-Entropy Ensembles

Complex (economic) systems over long times => in or out of equilibrium?

- Large complex systems: direct microscopic description impossible and maybe noisy (e.g. like particles in a room);
- Identify robust macroscopic properties (e.g. total energy), assume all the rest is random (pause economic theory);
- Construct equilibrium model: treat the macroscopic properties as constraints, maximize the entropy and make inference on the microscopic state;
- Redo for multiple snapshots: If higher-order (w.r.t. constraints) properties are correctly replicated, your system is quasi-equilibrium
- Release theory: check whether the constraint (e.g. energy) is controlled by economic factors (e.g. temperature): if so, you have a functionally explicit microscopic model with an explanatory variable!

Constructing (quasi-)equilibrium ensembles

Real system

Null model (equilibrium ensemble)

[^0]
Constructing (quasi-)equilibrium ensembles

Maximize the entropy

$S \equiv-\sum_{\mathrm{G}} P(\mathbf{G}) \ln P(\mathbf{G})$
subject to some good constraint C

Real system

Null model (equilibrium ensemble)

T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)

Constructing (quasi-)equilibrium ensembles

Maximize the entropy $S \equiv-\sum P(\mathbf{G}) \ln P(\mathbf{G})$
subject to some good constraint C

Real system

Check for equilibrium via deviations
$z_{X} \equiv \frac{X-\langle X\rangle}{\sigma[X]}$
of higher-order poperties X

Null model (equilibrium ensemble)

T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)

Example:

same system, two choices of constraints

Choice 2

Transition from quasiequilibrium of model 1 (left panel, white) to quasi-equilibrium of model 2 (right panel, orange) via a non-equilibrium regime (blue): early-warning signal!

Example:

same system, two choices of constraints

Choice 1

time

Choice 2

Transition from quasiequilibrium of model 1 (left panel, white) to quasi-equilibrium of model 2 (right panel, orange) via a non-equilibrium regime (blue): early-warning signal!

Real example: Dutch interbank network 1998-2008!

SCIENCE

Complexity theory and financial regulation

Economic policy needs interdisciplinary network analysis and behavioral modeling

By Stefano Battiston, ${ }^{\text {w }}$ J. Doyne Farmer ${ }^{2}$ Andreas Flache, ${ }^{4}$ Diego Garlaschelli, ${ }^{5}$ Andrew G. Haldane, ${ }^{6}$ Hans Heesterbeek, ${ }^{7}$ Robert May ${ }^{\text {³ }}$ Marten Scheffer ${ }^{14}$

\square
raditional economic theory could not explain, much less predict, the near collapse of the financial system and its omy. Since the 2008 crisis, there ha been increasing interest in using idea rom complexity theory to make sense of economic and financial markets. Concepts, such as tipping points, networks, contagion, feed back, and resilience have entered the finan cial and regulatory lexicon, but and results remains at an early stage. Recent insights and techniques offe potential for better monitoring and managefin financial syst ins mas
tipping points, warning signals. FiTIPPING Parkets have historically exhibite sudden and largely unforeseen collapses, at a systemic scale. Such "phase transitions" may in some cases have been triggered by unpredictable stochastic events. More often, however, there have been endogenous underlying processes at work. Analyses of complex systems ranging from the climate to ecosystems reveal that, before a majo transition, there is often a gradual and unnoticed loss of resilience. This makes the sys tem brittle: A small disruption can trigger domino effect that propagates through the system and propels it into a crisis state.

Department of Banking and Finance. University of Uurich
8032 Zorrich Switerland. 1 Institute for New Fconomic

 Economics. Univesity of Amstercam, 1018 WB Amsterccm.
 Netherlands. "BBeiing Norrmal University. 100875 Beijing

 Wageningen, Netherlands *Authors are in alphabetical ord
tCorresponding author E-mail: C.H.Hommes@uva.al

Recent research has revealed generic em pirical quantitative indicators of resilience that may be used across complex systems to detect tipping points. Markers include rising correlation between nodes in a network and rising temporal correlation, variance, and skewedness of fluctuation patterns. Thes indicators were first predicted mathemati cally and subsequently demonstrated experi living systems (I). A recent study of the Dutch interbank network (2) showed that standard analysis using a homogeneous net work model could only lead to late detection of the 2008 crisis, although a more realistic and heterogeneous network model could identify an early warning signal 3 years be fore the crisis (see the chart)
Ecologists have developed tools to quan-
tify the stability tify the stability, robustness, and resilience of food webs and have shown how thes depend on the topology of the netw the sists have tools to gauge the potial events to propagate in systems of interact in entities, to identify superspreaders and core groups relevant to infection persistence, and to design strategies to prevent or limit the spread of contagion (4)
Extrapolating results from the natural sciences to economics and finance presents challenges. For instance, publication of an early warning signal will change behavior and affect future dynamics [the Lucas critique (5)]. But this does not affect the case where indicators are known only to regula tors or when the goal is to build better net work barriers to slow contagion.
too central to fail. Network effects matter to financial-economic stability be cause shock amplification may occur via strong cascading effects. For example, Bank of International Setlements recenly
 gauge the systemic risk posed to the financial network by Global Systemically Impor tant Banks. Recent research on contarion in financial networks has shown that network topology and positions of banks matter; the global financial network may collapse even when individual banks appear safe (6). Capturing these effects is essential for quantifying stress on individual banks and for looking at systemic risk for the network as
a whole. Despite on-going efforts, these effects are unlikely to be routinely considered anytime soon.
Information asymmetry within a net-work-e.g. where a bank does not know about troubled assets of other banks-can be problematic. The banking network typically displays a core-periphery structure,
"..policies and financial regulation [that] weaken positive feedback.. stabiliz[e] experimental macroeconomic systems..."
with a core consisting of a relatively small number of large, densely interconnected banks that are not very diverse in terms of business and risk models. This implies that relans that in torn lective moral hazard, problem (ie alay take on more risk, because others will bear the costs in case of default) as banks recognize that they are likely to be supported by the authorities in situations of distress, the likelihood amplifies their incentives to herd in the first place.
Estimating systemic risk relies on granular data on the financial network. Unfortunately, business interactions between banks are often hidden because of confidentiality issues. Tools being developed to reconstruct networks from partial information and to estimate systemic risk (7) suggest that publicly available bank information does not allow reliable estimation of systemic risk. The estimate would improve greatly if banks publicly reported the number of connections with other ban
closing their identity.

closing their identity

In addition to data, understanding the effects of interconnections also relies on inthat reveal important network aspects, such that reveal important network aspects, such
as systemic repercussions of the failure of as systemic repercussions of the failure of
individual nodes. For example, DebtRank, individual nodes. For example, Debtrank,
which measures the systemic importance of individual institutions in a financial network (8), shows that the issue of too-central-to-fail may be even more important than too-big-to-fail.
agents and behavior. Agent-based models (ABMs) are computer models in which the behavior of agents and their incision rules mapping agents' observations onto actions. Although ABMs are less well stablished in analyzing financial-conomic systems than in, e.g., traffic control, epidemiology, or battlefield conflict analyses, they have produced promising results. Axtell (9) developed a simple ABM that explains more firm formation without recourse to external hocks. ABMs provide a good explanation for why the volatility of prices is clustered and time-varying (10) and have been used

Laboratory experiments with human abjects can provide empirical validation individual decision rules of agents, their ior. Recent experiments studying behavior of a group of individuals in the laboratory show that economic systems may deviate ignificantly from rational efficient equibrium at both individual and aggregate levels (14). This generic feature of positive eedback systems leads to persistent deviagence of speculation-driven bubbles and crashes, strongly amplified by coordination on trend-following and herding behavior (15). There is strong empirical evidence of

$\begin{array}{llllllllllll}1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009\end{array}$
Early-warning signals of the 2008 crisis in the Dutch interbank network. The figure portrays a temporal analysis of two loops. pairs of banks that are at the same time debtor and creditor to each other. Although the raw number of wo loops is not very informative about possible ongoing structural changes, its comparison with a random network model benchmark is. A z-score represents the number of standard deviations by which the number of two loops in he real network deviates from its expected value in the model. Small magnitudd z-scores (<3) indicate approximate ndom network models were used a homogeneous network with the same total number of links a sin the real netw (top) and a heterogeneous networkwhere every bank has the same number of connections as in the real network (bottom). The homogeneous model, often used in standard analyses, highlights only a a ate and abrupt structural hange (2008). The more realistic heterogeneous model also identifies a gradual, early-warning "precrisis" phase (2005-2007). [Modified from (2)]
to test systemic risk implications of reforms eveloped by the Basel Committee on Banking Supervision, which show how dynami-
cally changing risk limits can lead to booms and busts in prices (11,12). ABMs of market dynamics can be linked with ABM work on opinion dynamics in the social sciences (13) 0 understand how propagation of opinions through social networks affects emergent macro behavior, which is crucial to manag-
ing the stability and resilience of socioeconomic systems.
hese behaviors in financial markets in pracice, and these controlled laboratory experi of mechanisms, causality, and conditions for emergence of macro phenomena.
A simple behavioral model, with agents gradually switching to better performing euristics, explains individual, as well as mergent, macro behavor in theselaboratory a general mechanism for managing social contagion in such systems. For example,
monetary and fiscal policies and financial regulation designed to weaken positive feedback are successful in stabilizing experimencalibrated (16). Complexity theory provides mathematical understanding of these effects.

POLICY DASHBOARD. It is an opportune time for academic economists, complexity scientists, social scientists, ecologists, epidemiologists, and researchers at inan al insticm complexity theory, as a complement to existing economic modeling ap proaches (17). One ambitious option would be an online, financial-economic dashboard that integrates data, methods, and indicators. This might monitor and stress-test the global socioeconomic and financial system in something close to real time, in a way systems, such as weather systems or social networks. The funding required for essential policy-relevant and fundamental interdisaplinary progress in these areas would be rivial compared with the costs of systemic inancial failures or the collapse of the global inancial-economic system.

1. M. Schefferetal. Sceince 33
\qquad

 ${ }^{19}$ (1976).

 mwncs
2. B. Leearon in Handbook of Computational Fconosicis
 Amstain and K.L.Ludd. Eds. (Nothth-Holland.
3. As. Thumere tal., Quant. Finana 12.695 (2012).

4. T.Bao.C.H.Hommes."Whenspeculatorsmeet construc-

cknowledgments
We acknowededgefinancicial support from The Netherlands
 Sciences. The Netherlands Organisation for Sc
the lorenticerter, and the Tindergen

Part 2:

if sytems are at (quasi-)equilibrium, their structure can be reconstructed from partial information
(i.e. from the "right" constraints)

The challenge: reconstructing (interbank) networks from partial information

Crucial for estimating systemic risk: collapse of entire network

Public:

each bank's total exposure towards the aggregate of all other banks

Hidden:

each bank's individual exposure towards each single bank

Local properties, $\mathrm{O}(\mathrm{N})$ (known/public)

Our goal:

Can we statistically reconstruct

 the original structure in such a way that:1) Privacy is protected
2) Higher-order effects are correctly predicted

Reconstruction from local information (constraints)

degree
in-degree \&
out-degree
in-degree \&
out-degree

$$
\vec{C}=\left\{k_{i}\right\}
$$

$\vec{C}=\left\{k_{i}^{\text {in }}, k_{i}^{\text {out }}\right\}$
$\frac{0}{0}$
$\frac{\square}{\square}$
$\frac{0}{3}$
$\frac{1}{3}$$\{$

strength
$\vec{C}=\left\{S_{i}\right\}$
in-strength \& out-strength
$\vec{C}=\left\{s_{i}^{\text {in }}, s_{i}^{\text {out }}\right\}$

Binary constraints: fixed degree sequence

$$
\vec{C}=\left\{k_{i}\right\}
$$

Equiprobable configurations:

(must hold for all vertices simultaneously)

Note: the resulting distribution is FERMI-DIRAC

Network

Result:

 good binary reconstruction of higher-order properties from degrees only- Office social network [27]
- Research group social network[27]
- Fraternity social network [27]
- Maspalomas Lagoon food web [28]
- Chesapeake Bay food web [28]
- Crystal River (control) food web [28]
- Crystal River food web [28]
- Michigan Lake food web [28]
- Mondego Estuary food web [28]
- Everglades Marshes food web [28]
- Italian interbank network (1999) [26]
- World Trade Web (2000) [20]

R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli, New J. Phys. 16, 043022 (2014)

Weighted constraints: fixed strength sequence

$$
\vec{C}=\left\{s_{i}\right\}
$$

Equiprobable configurations:

(must hold for all vertices simultaneously)
Note: the resulting distribution is BOSE-EINSTEIN

Bad standard reconstruction (from strengths only)

R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli, New J. Phys. 16, 043022 (2014)

Reason: poor binary reconstruction from strengths only

The naive expectation that aggregate weighted properties are more informative than binary ones is incorrect!
R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli, New J. Phys. 16, 043022 (2014)

Doubling the constraints: degrees + strengths

$$
\vec{G}=\left\{k_{i,} s_{i}\right\}
$$

Note: the resulting distribution is BOSE-FERMI (mixed!)
[Garlaschelli \& Loffredo, Phys. Rev. Lett. 102, 038701 (2009)]

Example: reconstructing the average exposure of neighboring banks

Traditional approach

(from "strengths" only)

True (hidden) value

Example: reconstructing the average exposure of neighboring banks

Enhanced method
(from strengths + degrees)

$+$

Enhanced reconstruction (from strengths and degrees)

R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli, New J. Phys. 16, 043022 (2014)

Reconstructing systemic risk estimators

Percolation

(relative size of giant component vs occupation probability p)

Path length
(distribution of shortest distances λ among pairs of nodes)

Group DebtRank
(total devaluation induced by an initial devaluation Φ)
[Battiston et al. 2012]

G. Cimini, T. Squartini, D. Garlaschelli, A. Gabrielli, Scientific Reports 5, 15758 (2015)
$w_{i \rightarrow j}$: true (unknown)
$\widetilde{\mathcal{W}}_{i \rightarrow j}$: reconstructed from margins $\left\{\begin{array}{l}s_{i}^{\text {in }}=\sum_{j \in V} w_{j \rightarrow i} \\ s_{i}^{\text {out }}=\sum_{j \in V} w_{i \rightarrow j}\end{array}\right.$
$w_{i \rightarrow j}:$ true (unknown)
$\widetilde{\mathcal{W}}_{i \rightarrow j}$: reconstructed from margins $\left\{\begin{array}{l}s_{i}^{i n}=\sum_{j \in V} w_{j \rightarrow i} \\ s_{i}^{\text {out }}=\sum_{j \in V} w_{i \rightarrow j}\end{array}\right.$

Traditional approach

(from "strengths" only)

$$
\widetilde{w}_{i \rightarrow j}=\frac{s_{i}^{\text {out }} s_{j}^{\text {in }}}{W}
$$

margins: OK, topology: BAD
$\mathcal{W}_{i \rightarrow j}:$ true (unknown)
$\widetilde{\mathcal{W}}_{i \rightarrow j}:$ reconstructed from margins $\left\{\begin{array}{l}s_{i}^{\text {in }}=\sum_{j \in V} w_{j \rightarrow i} \\ s_{i}^{\text {utt }}=\sum_{j \in V} w_{i \rightarrow j}\end{array}\right.$

Traditional approach

 (from "strengths" only)

$$
\tilde{w}_{i \rightarrow j}=\frac{s_{i}^{\text {out }} s_{j}^{\text {in }}}{W}
$$

margins: OK, topology: BAD

Enhanced method

(from strengths + degrees)

$$
\widetilde{w}_{i \rightarrow j}=\frac{z^{-1}+s_{i}^{\text {out }} s_{j}^{\text {in }}}{W} \widetilde{a}_{i \rightarrow j}
$$

margins: OK, topology: OK
G. Cimini, T. Squartini, D. Garlaschelli, A. Gabrielli, Sci.Rep. 15:15758 (2015)

Part 3:

if sytems are at (quasi-)equilibrium,

$$
\begin{aligned}
& \text { their structure can be } \\
& \text { modeled with } \\
& \text { explanatory variables }
\end{aligned}
$$

(which should couple to the "right" constraints)

Same story for international trade

- Jan Tinbergen: $1^{\text {s }}$ Nobel Memorial Prize in Economics, 1969
- Leiden, 1929: PhD Thesis in physics "Minimumproblemen in de natuurkunde en economie" (supervisor P. Ehrenfest)

The (simple) Gravity Model of international trade:

$$
\left\langle w_{i j}\right\rangle=\alpha \cdot G D P_{i}^{\beta} \cdot G D P_{j}^{\beta} \cdot D_{i j}^{\gamma} \cdot X_{i j}^{\epsilon}
$$

Simplest case: $\beta \approx-\gamma \approx 1, \varepsilon \approx 0$ (as in Newton's law)
J. Tinbergen, Shaping the World Economy: suggestions for an international economic policy (the Twentieth Century Found, New York, 1962).

The Gravity Model works well for "non-zeroes"

(c)

G. Fagiolo, Journal of Economic Interaction and Coordination 5(1), 1-25 (2010).

but: the International Trade Network (ITN) has a complex topology!

Serrano, Boguna, Vespignani, J. Econ. Inter. Coord. 2007

'Against gravity'

Duenas \& Fagiolo, LEM Working Paper, Scuola Superiore Sant'Anna, Pisa (2011)

Even if only the correct number of links (left panel) is placed where the "gravity" is stronger, the (density-induced) GM predicts too much assortativity (center) and clustering (right)
=> 'repulsion' where 'attraction' is expected, and vice versa!

GDP-driven model of Trade Network

Replacing hidden variables with country GDP in the binary configuration model yields the Fitness Model (Caldarelli et al. PRL 2002)

Adding weights: Enhanced Gravity Model

Almog, Bird, Garlaschelli, http://arxiv.org/abs/1506.00348 (2015).

Adding weights: Enhanced Gravity Model

Almog, Bird, Garlaschelli, http://arxiv.org/abs/1506.00348 (2015).

Part 4:

if sytems are out of equilibrium, reconstruction and modelling are unreliable...
...but may still be crucial to build early-warning signals

Dutch banks: signs of the crisis?

Size \& density

Dutch banks: signs of the crisis?

t
Size \& density

Dutch banks: signs of the crisis?

t
Size \& density
No sign of crisis?
Maybe not visible from purely topological quantities?

Homogeneous benchmark/null model

Controlling for overall size and density of the network (random graph)

Comparing observed (X) and randomized $(\langle X\rangle)$ properties:

$$
\text { z-score } \quad z_{X} \equiv \frac{X-\langle X\rangle}{\sigma[X]}
$$

T. Squartini, I. van Lelyveld, D. Garlaschelli, Sci. Rep. 3 (2013) 3357

Seeing the crisis?

Full dyads (reciprocated)

Single dyads (non-reciprocated)

Empty dyads (disconnected)

Seeing the crisis?

Full dyads (reciprocated)

Single dyads (non-reciprocated)

Heterogeneous benchmark

Controlling for different connectivities of banks: heterogeneous benchmark/null model

Constraints:
in-degree \& out-degree (of each node)

$$
\vec{C}=\left\{k_{i}^{\text {in }}, k_{i}^{\text {out }}\right\}
$$

Constraints:
in-degree,
out-degree \& reciprocal degree

$$
\vec{C}=\left\{k_{i}^{\text {in }}, k_{i}^{\text {out }}, k_{i}^{\text {both }}\right\}
$$

$$
\text { z-score } \quad z_{X} \equiv \frac{X-\langle X\rangle}{\sigma[X]}
$$

T. Squartini, I. van Lelyveld, D. Garlaschelli, Sci. Rep. 3 (2013) 3357

Foreseeing
$C=L$
the crisis?

$\vec{C}=\left\{k_{i}^{i n}, k_{i}^{\text {out }}\right\}_{\quad \text { Pre-crisis Crisis }}$

1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2008

2008

Heterogeneity (= "right" constraints) matters!

As seen from a homogeneous benchmark, the collapse appears sudden (abrupt transition)

As seen from a heterogeneous benchmark, the collapse appears gradual (continuous transition)

Note: the measured quantities are the same in the two cases; what changes is their expected value!

$$
z_{X} \equiv \frac{X-\langle X\rangle}{\sigma[X]}
$$

T. Squartini, I. van Lelyveld, D. Garlaschelli, Sci. Rep. 3 (2013) 3357

From dyads to triads

OTC markets: underestimation of counterparty risk

\mathbf{A} is (hopefully) prepared to the direct effect of \mathbf{B} 's default, but not to the indirect effects of \mathbf{B} 's default through \mathbf{C}.

From dyads to triads

OTC markets: underestimation of counterparty risk

\mathbf{A} is (hopefully) prepared to the direct effect of \mathbf{B} 's default, but not to the indirect effects of \mathbf{B} 's default through \mathbf{C}.
$C=L$

From dyads to triads

OTC markets: underestimation of counterparty risk

\mathbf{A} is (hopefully) prepared to the direct effect of \mathbf{B} 's default, but not to the indirect effects of \mathbf{B} 's default through \mathbf{C}.
$C=L$

$$
\vec{C}=\left\{k_{i}^{\text {in }}, k_{i}^{\text {out }}\right\}
$$

From dyads to triads

OTC markets: underestimation of counterparty risk

\mathbf{A} is (hopefully) prepared to the direct effect of \mathbf{B} 's default, but not to the indirect effects of \mathbf{B} 's default through \mathbf{C}.
$C=L$

$$
\vec{C}=\left\{k_{i}^{\text {in }}, k_{i}^{\text {out }}\right\}
$$

Pre-crisis Crisis

$$
\vec{C}=\left\{k_{i}^{\text {in }}, k_{i}^{\text {out }}, k_{i}^{\text {both }}\right\}
$$

1998| 1999| 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008

1998| 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007

1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 200 (for triads, we need to filter out dyadic effects) $\widehat{\jmath}$

Debt loops: ‘risk autocatalysis’?

Circular lending loops: increased dependencies among default probabilities

Decreasing reciprocity = increasing systemic risk

Debt loops: ‘risk autocatalysis’?

Circular lending loops: increased dependencies among default probabilities

Debt loops

ALL TRIADS

$$
\begin{gathered}
\text { z-score: } \\
z_{m} \equiv \frac{N_{m}\left(\mathrm{~A}^{*}\right)-\left\langle N_{m}\right\rangle^{*}}{\sigma^{*}\left[N_{m}\right]}
\end{gathered}
$$

Significance profile:

$$
S P_{m} \equiv \frac{z_{m}}{\sqrt{\sum_{m=1}^{13} z_{m}^{2}}}
$$

T. Squartini and D. Garlaschelli, Lec. Not. Comp. Sci. 7166, 24-35 (2012)

Comparison with International Trade Network:

 quasi-stationary all the way (1950-2000)DCM

Only unexplained pattern (as expected from
Granovetter's argument):

RCM

In/out equilibrium: take-home messages

- Maximum-Entropy Ensembles are powerful to check for (quasi-)equilibrium and identify the "right" constraints;
- Economic networks are not well replicated/modeled without imposing local topological constraints (="right" constraints);
- The international trade network is largely at (quasi-)equilibrium, and can be modeled by coupling the GDP and/or distances to the right constraints (improving upon gravity model);
- Interbank networks at (quasi-)equilibrium can be reconstructed reliably (along with their systemic risk) from the right constraints
- As crises approach, interbank network reconstruction is unreliable and actually prevents from detecting early-warning signals;
- Still, the comparison with the "right" (quasi-)equilibrium model is crucial to create the early-warning signal itself.

[^0]: T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)

